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The effect of dissipation on the flow of a stratified fluid over topography is considered 
in the weakly nonlinear, long-wave limit for the case when the flow is near resonance, 
i.e. the basic flow speed is close to a linear long-wave speed for one of the long-wave 
modes. The two types of dissipation considered are the dissipation due to viscosity 
acting in boundary layers and/or interfaces and the dissipation due to viscosity 
acting in the fluid as a whole. The effect of changing bottom topography on the flow 
produced by a force moving at a resonant velocity is also considered. In this case, the 
resonant condition is that the force velocity is close to a linear long-wave velocity for 
one of the long-wave modes. It is found that in most cases, these extra effects result 
in the formation of a steady state, in contrast to the flow without these effects, which 
remains unsteady for all time. The flow resulting under the action of boundary-layer 
dissipation is compared with recent experimental results. 

1. Introduction 
The flow of a homogeneous or stratified fluid over topography for the case when 

the imposed upstream flow velocity is near a linear long-wave velocity for the fluid, 
this flow being referred to as resonant, has been the subject of much theoretical and 
experimental attention. The equation governing this flow in the long-wavelength, 
weakly nonlinear limit has been derived by Akylas (1984) and Cole (1985) for the case 
of a surface-pressure forcing whose lengthscale is much less than the characteristic 
lengthscale of the flow, by Lee (1985) for a general lengthscale surface pressure or 
topographic forcing and by Grimshaw & Smyth (1986) (hereinafter referred to as GS) 
for a general lengthscale topographic forcing in a stratified fluid. This equation is a 
forced Korteweg-de Vries equation, which can be written in the form 

(1.1) 

when there are no dissipative effects or, for the case of a moving forcing, the 
undisturbed depth of the fluid is constant. The coordinate x is positive in the 
direction of the imposed upstream flow. The parameter A in (1 .1)  is a detuning 
parameter measuring how close the flow is to linear resonance, with A = 0 
corresponding to exact linear resonance ; that is, the imposed upstream flow velocity 
equals a linear long-wave velocity. The function G(x)  is related to the form of the 
forcing. 

Numerical solutions of (1 .1)  for various forms of the localized forcing G have been 
obtained by Akylas (1984), Cole (1985), Lee (1985) and GS. The form of these 
solutions was found to depend markedly on the sign of G. Positive forcing (G > 0) 
corresponds to the forcing and the soliton solutions of (1.1) having the same polarity, 

-At  - AA, + 6AA, +A,,, + G,( X) = 0 
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and negative forcing (G < 0 ) ,  the opposite polarity. For positive forcing, it was found 
that the flow upstream of the forcing consisted essentially of a train of solitons. 
Downstream of the forcing, a flat depression formed, followed by a modulated 
cnoidal wavetrain which brought the disturbance back to zero. The depression behind 
the forcing formed to compensate for the mass sent upstream. This solution is shown 
in figure l (a) .  The parameters go and 5, the height and lengthscale of the forcing 
respectively, are formally defined in $ 2 .  The salient feature of this flow is that  no 
steady state forms upstream of the forcing ; solitons are periodically generated at the 
forcing and sent upstream. For negative forcing, the solution is more complicated. 
This solution is shown in figure l ( b ) .  The flow over the forcing remains unsteady, 
with modulated cnoidal waves sent downstream and isolated solitons sent upstream, 
with the period between these solitons being large. As explained by GS, the solution 
over the forcing remains unsteady as negative forcing acts to keep disturbances over 
the forcing. 

GS obtained analytical approximations to the solution for positive forcing by 
assuming that upstream of the forcing, there exists a train of equal-amplitude, 
equally spaced solitons. The amplitude and spacing of these solitons was then found 
by using a mass and energy conservation argument. The downstream solution was 
obtained as a simple wave solution of the modulation equations for the Korteweg- 
de Vries equation, which were derived by Whitham (1974, $9 16.14-16.16). These 
equations apply in the present context as the forcing is localized and hence the term 
G, in (1 .1)  is effectively non-zero only in some finite region. The downstream solution 
agreed well with the numerical solution over the whole range of A .  The agreement 
with the upstream numerical solution was good for A near zero, but for A away from 
zero, the agreement was not so good. Solutions agreeing with the numerical solutions 
over the whole range of A (in the resonant regime, which will be defined in the next 
paragraph) were obtained by Smyth (1987) as simple wave solutions of the 
modulation equations for the Korteweg-de Vries equation. In  this solution, the 
upstream solution was found as a modulated cnoidal wave with modulus squared 
ranging from 1 a t  the front of the wavetrain to some value ma, 0 < ma < 1 a t  the 
forcing. For A near zero, ma was close to 1, so that the upstream solution is essentially 
a train of solitons. 

It was found by GS and Smyth (1987) that the resonant solution exists only for 
some resonant band A ,  < A < A, of A ,  where A ,  < 0, A,  > 0 and A ,  and A, depend on 
the forcing. Outside this band, the solution is qualitatively the same as the linear, 
non-resonant solution. For a broad forcing, which is the focus of the present work, 
it was found that A, = -$(12g0)i and A, = ( 12go)i, go being the amplitude of G. In  the 
analytical solutions of GS and Smyth, the net effect of the forcing is to produce a 
jump down in the mean level of the flow as the forcing is crossed. For a broad forcing, 
GS showed that the mean value of A just upstream of the forcing is given by 

A-  = $[A+(12go)i], 

and the mean value of A just downstream of the forcing is 

(1.3) 
In  the numerical and analytical solutions described above, the fluid was assumed 

to be inviscid and of uniform initial depth away from the forcing. In  experimental 
and observational situations, viscous forces, and, for a moving forcing, changes in the 
undisturbed depth of the fluid, are present and these may result in significant 
alterations to the analytical solutions of GS and Smyth (1987). This is especially so 

A - 1 A -  + - B[ (12go)tl. 
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FIGURE 1 .  Numerical solution for forcing ( 2 . 6 ~ )  with 6 = 0.3, d = 0 and no dissipation 
( a )  9 0  = 1, ( b )  - 1 .  

in the resonant flow regime as, for positive forcing, it is predicted that the flow 
upstream of the forcing remains unsteady with waves continually being generated a t  
the forcing and sent upstream. The effect of viscosity (and depth changes) on this 
predicted flow is of importance in determining the significance of the analytical 
solution to experimental and observational situations and to the question of whether 
a steady state will ultimately be formed. The resonant flow can be produced in 
experimental situations (Baines 1984; Lee 1985; Melville & Helfrich 1987) ; however, 
viscosity and depth changes could affect the occurrence of this flow in oceanographic 
and meteorological situations. Furthermore, the predicted flow for negative forcing is 
highly unsteady (see figure l b )  and it  is expected that viscosity will have a marked 
effect on this flow. Determining the effect of viscosity on the flow for negative forcing 
will indicate how readily this flow can be produced experimentally (the author knows 
of no experiments or observations corresponding to negative forcing in the resonant 
regime). 

I n  the present work, three effects will be considered; these being (1) changes in 
fluid depth, (2) the action of viscosity in boundary layers and/or interfaces and (3) 
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the action of viscosity in the fluid as a whole. Case (2) is of most importance in 
experimental situations, with the other two cases being of importance for 
oceanographic and meteorological situations. Case (1) is of relevance only for the 
situation of a moving forcing (e.g. a pressure distribution). The equation governing 
the resonant flow under one of the additional effects (1)-(3) is the forced Korteweg- 
de Vries equation (1.1) with an appropriate additional term. The form of these 
additional terms is discussed in the next section, with the detailed discussion of the 
equations appearing in $93-5. It is found that viscosity causes the predicted 
upstream and downstream wavetrains for positive forcing to eventually become 
undular bores. Viscous effects are found to go some way towards explaining the 
difference between the experimental results of Lee (1985) and Melville & Helfrich 
(1987) and the inviscid theoretical predictions, although this is complicated by the 
fact that higher-order nonlinear and dispersive terms also have an effect. Interest 
centres on the effects of (1)-(3) on the resonant solution. The effects on the non- 
resonant solution (i.e. that for A > A ,  or A < A , )  are not considered here, as no major 
changes are inttroduced and the non-resonant solution behaves in the expected 
manner. 

2. Forced Korteweg-de Vries equations incorporating viscosity and depth 
changes 

Let us consider the two-dimensional flow of a strattified fluid over localized 
topography. To describe the flow, a horizontal coordinate X ,  a vertical coordinate x 
and a time T are used, where these coordinates have been non-dimensionalized by a 
lengthscale h,, h, being a typical vertical dimension and a timescale Ny1,  N ,  being a 
typical value of the Brunt-Vaisala frequency. We assume that the basic flow state 
has a constant horizontal velocity of magnitude V in the direction of X ,  a non- 
dimensional density po(z) (non-dimensionalized by a typical density) and a non- 
dimensional pressure po(z) ,  where p,, = -po.  The topography is given by 

z = - h + ag(PX), (2.1) 

where a: = a / L ,  p = h,/L, a being a typical amplitude of the topography and L a 
typical horizontal lengthscale. Since the topography is assumed to be localized, so 
that g + 0 as X --f f co , this defines the origin of 2 if h is defined to be the undisturbed 
depth of the fluid. This flow is considered in the weakly nonlinear, long-wave limit, 
so that a 4 1, /3 4 1. We further specialize to the particular case when the imposed 
upstream flow velocity is near a linear long-wave velocity for the fluid. In this 
situation, linear theory predicts a singular solution as energy cannot propagate away 
from the obstacle. As stated in the introduction, in the absence of dissipation, the 
equation describing the flow under these conditions is the forced Korteweg-de Vries 
equation 

-At-AAz+6AA,+A,..+G, = 0. (2.2) 

A(z,  0) = 0, (2.3) 

The initial condition to be used in the present work is 

which corresponds to  switching on the forcing at t = 0. This equation represents a 
balance between nonlinearity and dispersion, which, since the flow is resonant and 
produces a response of 0(&), requires p2 = a;. The functions A and G ,  the detuning 
parameter A and the coordinates x and t are related to the physical vertical 
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displacement c, the physical bottom topography, the imposed upstream flow velocity 
and the physical horizontal space and time coordinates by 

where 

t = hc, BaiT, 
x = px, 

v = c,(l +aihA), 

i6h 6 = at--A$,(z), 
P 

$,(z) being the modal function and c, the linear phase speed for the resonantly forced 
long-wave mode (see GS). 

It should be noted that in obtaining (2.2), it  has been assumed that the scaled out 
coefficient p of the nonlinear term is O( 1). This is not the case, for example, for a fluid 
with constant Brunt-Viiisala frequency and small Boussinesq parameter h, N :  g-', in 
which case (2.2) is not a valid approximation and terms cubic in the amplitude must 
be included. As noted in the introduction, (2.2) also describes the flow produced by 
a moving two-dimensional force (such as a moving pressure distribution on the 
surface of a fluid of constant density) in the weakly nonlinear, long-wave limit when 
the velocity of the force is near a linear long-wave velocity. In  this case, the forcing 
function G is given by an expression similar to that in (2.4) which involves this force 
(see Akylas 1984; Cole 1985; or Lee 1985). 

In the present work, it is assumed that the forcing function G is of the form 

The function G is taken to have the following properties : G(x') 2 0 for all x', G' has 
a maximum value of 1 at x' = 0 and G + 0 as x' + co . The parameter ,$ measures 
the lengthscale of the forcing. The forcing is therefore assumed to be localized and of 
one sign. 

GS studied the initial-value problem (2.2) and (2.3) both analytically and 
numerically. The numerical solutions were obtained using the pseudospectral 
method of Fornberg & Whitham (1978) with the forcing functions 

G = go sech2,$x, G = g 0 e-fzxz. (2.6u, b)  

The numerical solution of (2.2) and (2.3) for A = 0 and the forcing function ( 2 . 6 ~ )  
with go = 1 and [ = 0.3 is shown in figure 1 (a).  In figure 1 (b) ,  the solution is shown 
for A = 0, go = - 1 and [ = 0.3. For convenience, the numerical solutions in this paper 
have the forcing function centred a t  x = 85. As discussed in the introduction, GS and 
Smyth ( 1987) obtained analytical approximations to the solution for positive forcing 
that were in good agreement with the numerical solutions. For further details of this 
non-dissipative solution, the reader is referred to this work. 
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are now discussed before their solutions are taken up in detail in $33-5. 
The equations for resonant flow when viscosity and variable fluid depth are added 

2.1. Variable fluid depth 

The forced Korteweg-de Vries equation for a force moving near resonance in a fluid 
with variable undisturbed depth is 

-A, - AA, + 6AAo + A,,, + G,(S) = F(s)  A ,  (2.7) 

where, from Grimshaw 

S 

6 
A-4 

= - ( s -a t ) ,  
a 

the subscript s denoting differentiation with respect to s. The physical coordinate x 
is related to s by (2.8b). 

For the special case of a force moving on the surface of a fluid with constant 

density, 9h 
T ( s )  = 2 

4h ’ 

In  $ 3, the particular case r= €, (2.10) 

E > 0 a constant, is discussed. This choice of r h a s  the advantage of simplicity as well 
as being representative of increasing depths. The depth change (2.10) acts as a 
damping, as can be seen upon consideration of the energy conservation equation for 
(2.7). The dispersion relation for the dispersive part of the unforced equation (2.7) 
with (2.10) is 

w = A k + k 3 - i e .  (2.1 1 )  

This depth change then has a uniform effect on all frequencies. 

2.2. Boundary-layer viscosity 

The equation incorporating the effect of viscosity in boundary layers and/or 
interfaces on the resonant flow of a fluid is 

- A t -  AA, + 6AA, +A,,, + G, - 6V(A)  = 0, (2.12) 
where 

( - ik); eikz F ( A )  dk, 

(2.13) 

Miles (1976) and Grimshaw (1983) showed that the Fourier transform/antitransform 
pair gives the effect of boundary-layer friction. This formulation of the effect of 
boundary-layer friction is equivalent to that originally given by Keulegan (1948). 
Physically and experimentally, this is generally the most important type of 
dissipation due to viscosity. The parameter S is given by (see Grimshaw 1983) 

(2.14) 
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where v‘ is the non-dimensional kinematic viscosity (an inverse Reynolds number) 
and b is the non-dimensional breadth of the channel the motion takes place in. The 
second to last factor, incorporating the effect of any sidewalls ( b  = 00 if there are 
none), was found by Hammack & Segur (1974) and Weidman & Maxworthy (1978) 
to improve agreement with experimental results. It can be seen that the parameter 
6 is proportional to the square root of the kinematic viscosity. For the special case 
of surface waves on a fluid of constant density 

6 = 6 (Gr (1 +?), (2.15a) 

and for a two-layer fluid with lower-layer density pz, upper-layer density pl ,  lower- 
layer depth d and total depth h, 

(*)t ( 3 (2.15 b )  

(see Leone, Segur & Hammack 1982 and Grimshaw 1983). For the case of a two-layer 
fluid, the densities are non-dimensionalized by the mean density of the two fluids and 
the depths are non-dimensionalized by the product of the depths of the two layers 
divided by the total depth. 

2.3.  Viscosity of the $uid as a whole 

6 d 2  1 +- (p,d+p,(h-d))i 

P5 d2[h(h -d )  (p1+pz)li[p,d+p,(h-d)l 

The final additional process considered in the present work is that  due to the 
kinematic viscosity of the fluid as a whole. The derivation of GS of the forced 
Korteweg-de Vries equation can be simply extended to include the viscous terms of 
the Navier-Stokes equations. This derivation is not given here as the extension is 
minor. The end result is that the forced Korteweg-de Vries equation including the 
effect of the viscosity of the fluid as a whole is 

-At - AA, + 6AA , + A,,, + G, + vA,, = 0, (2.16) 

(2.17) 
VIC 1 v = n  
SPA’ 

where v is given by 

v’ being the non-dimensional kinematic viscosity of the fluid (inverse Reynolds 
number). For surface waves on a fluid of constant density, 

3v’ v = -  
P ’  

(2.18) 

Equation (2.16) is a forced KdV-Burgers equation. 
Which of the three effects (1)-(3) dominates in a given situation depends on the 

relationship between e, 6 and v. I n  most physical and experimental situations, the 
dominant form of viscous decay is that of Case (2) (see Q 1 )  as S depends on the square 
root of the kinematic viscosity, whereas v is proportional to the kinematic viscosity. 
Also, in experimental situations, the variation in the depth of the fluid is so small 
that e 4 6. The effect of the viscosity of the fluid as a whole is discussed as while both 
this form of viscous decay and boundary-layer viscosity lead to undular bores 
forming upstream and downstream of the forcing, the long-term behaviour in the two 
cases is different in that the bore for the viscous decay of (3) becomes steady, while 
that for the boundary-layer viscosity of (2) decays to zero. 
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The three equations (2.7), (2.12) and (2.16) are solved numerically using the 
pseudo-spectral method of Fornberg & Whitham (1978). The forcing 

G = go sech2 Ex (2.19) 

is used as the solutions for this choice of G are representative of the class of forcings 
G with properties given by (2 .5 )  (see GS). Furthermore, only the case of a broad 
forcing, so that ( is small, is considered. This limit is chosen as it is the case of most 
geophysical significance and the overall features of the solution do not depend on the 
lengthscale of the forcing (see GS). 

A preliminary idea of the relative effect of the two types of viscous dissipation may 
be obtained by considering the dispersion relations for the non-forced, dispersive 
parts of (2.12) and (2.16). These dispersion relations are 

(2.20) 

and w = A k  + k3 - ivk2 (2.21) 

respectively. The higher frequencies for (2.16) are damped out faster than those for 
(2.12). The viscous damping of (2.12) can be thought of as weak and that of (2.16) 
as strong (for equal values of 6 and v). For both types of viscous dissipation, the 
higher wavenumbers are preferentially damped out. This is in contrast to the case for 
(l),  where all wavenumbers are damped uniformly. It is therefore expected that the 
solutions for the two types of viscous decay will be similar and very different from 
those for (1). This expectation is borne out in the numerical solutions presented in the 
next three sections. 

From the work of GS, it is expected that the solutions for positive and negative 
forcing will be of different form. Also, it is expected that the solutions for large and 
small values of the damping or bottom slope will be different. Therefore, the solutions 
for positive and negative forcing, with either small or large bottom slope or weak or 
strong damping, are discussed separately for each of (1)-(3). 

3. Forced Korteweg-de Vries equation with changing fluid depth 
In this section, the equation 

-A,-AA8+6AA8+A,,+G,j-eA = 0 (3.1) 

is considered, this equation giving the effect of a particular Lype of changing bottom 
topography on the flow produced by a resonantly moving Sorcing. It is anticipated 
from the work of GS that the solutions of (3.1) fall into two broad classes, namely 
those for positive and negative forcing. Let us first consider the case of positive 
forcing. 

3.1. Positive forcing, small bottom slope 
The numerical solutions of (3.1) with A = 0, e = 0.05,0.15 and the forcing (2.19) with 
go = 1 and 6 = 0.3 are shown in figure 2 (a and b ) .  For comparison, the solution for 
E = 0 is shown in figure 1 (a) .  The effect of increasing depth can be clearly seen. On 
the upstream side of the forcing, some of the waves are being overtaken by the wave 
behind. Waves produced a t  an earlier time are damped more since the damping has 
acted on them for a longer time. If this damping is large enough, a given wave will 
slow down sufficiently for the wave behind it to interact with and overtake it. This 
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FIGURE 2. Pu’umerioal solution of (3.1) with d = 0,g, = 1,t = 0.3. (a )  e = 0.05, ( b )  0.15, ( c )  0.50. 
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Numerical slope Theoretical slope 

€ Upstream Downstream Upstream Downstream 
~ 0.05 -0.008 0.0083 -0.0083 

0.10 -0.014 -0.016 0.0167 -0.0167 
0.15 0.024 -0.025 0.0250 - 0.0250 

TABLE 1. Slopes of the long-term solution for c small 

overtaking is facilitated by the fact that  solitons interact and overtake at a distance 
if their amplitudes are sufficiently similar. The solitons, in effect, are changing 
identity upon overtaking. As E increases, these overtaking events occur more often 
due to the increased slowing down of the waves because of the greater damping. 

It can be seen from figures 1 and 2 that the waves in the downstream modulated 
cnoidal wavetrain have slower phase speed and the downstream depression is of 
lesser extent and depth compared with the solution for B = 0. The reason for this can 
be seen from consideration of the expression for the phase speed of cnoidal waves. 
The phase speed of a cnoidal wave of mean height A ,  amplitude a and modulus 
squared m is 

- 
c = A - ~ A - ~ c L  [: --l-- 23 (3.2) 

where E and K are complete elliptic integrals of the first and second kinds 
respectively. It can be seen that the phase speed of a cnoidal wave decreases as A and 
a increase. For the solutions shown in figure 2, the accelerating effect of the reduction 
in a is overcome by the deceleration due to the increase in < 0). Hence the 
modulated cnoidal wavetrain slows down and the downstream depression decreases 
in length. 

From figure 2(b) in particular, it  can be seen that the solution upstream of the 
forcing tends to a solution that decreases linearly to zero and that downstream of the 
forcing, the solution tends to one that increases linearly to zero. These linear 
portions are connected by a steady state over the forcing. The reason for this 
behaviour can be found upon consideration of (3.1). For A = 0, this equation has the 

Ee exact particular solution 
A = - + C  

6 (3.3) 

for G = 0, where C is a constant. The constants C- for the upstream solution and 
C, for the downstream solution are obtained by matching with the steady state over 
the forcing. Corner layers need to be fitted where the linear portions near A equal 
to 0. In  table 1, the theoretical slopes of these linear sections of the long-term 
solution are compared with the numerical slopes. There is no entered numerical value 
of the upstream slope for B = 0.05 as the upstream solution takes a long ‘time’ to 
evolve into a steady state and for e = 0.05, this ‘time’ was too large for a value of 
the upstream slope to be conveniently obtained. It can be seen that the agreement 
between the theoretical slopes given by (3.3) and the numerical slopes is quite 
good. 

Small values of E thus cause the solution of (3.1) for positive forcing to tend to a 
steady state as s + CO. For A = 0, this steady state consists of a steady state over the 
forcing with linear sections upstream and downstream of the forcing, given by (3.3), 
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FIGURE 3. Amplitude a of the lead wave of the upstream wavetrain in figure 2(a)  as a function 
of s (-) ; amplitude a of a n  unforced isolated soliton as a function of s (----). 

S 

taking the solution to zero a t  a finite distance upstream and downstream. The 
behaviour of the solution for A =I= 0 and A in the resonant band -312g0)i < A < 
(12g0)i will be similar. In  particular, the steady flow outside of the forcing region 
will be the solution of 

-AA,+~AA,+A,, , - -EA = 0. (3.4) 

Unfortunately, this equation cannot be solved exactly for A =k 0. For general bottom 
profiles (i.e. general T(s)),  the long-term solution will be more complicated than that 
for T = e. For profiles with increasing depth, the solution away from the forcing will 
decay to zero and only a local solution about the forcing will remain. This is because 
a steady solution similar to (3.3) cannot form when T i s  not a constant. For a profile 
in which the depth decreases, the effect of r is to feed energy into the solution and 
the waves grow in amplitude rather than decay as in figure 2(a,  b). This will 
ultimately result in the waves breaking in a physical situation. Of course, the weakly 
nonlinear assumption used in deriving the forced Korteweggde Vries equation ceases 
to be valid before breaking. 

Since the theoretical upstream wavetrain of Smyth (1987) for A near zero and 
c = 0 is nearly a train of solitons, it might be expected that the behaviour of the 
wavetrain for E =+ 0 will be given by the behaviour of a single soliton in variable- 
depth fluid. This is not the case however as the upstream wavetrain is actually a 
modulated cnoidal wavetrain whose individual waves are linked together and, 
through this linkage, to  the forcing. While it is sufficient to  consider the upstream 
wavetrain as a series of solitons for qualitative purposes, this is not so for any 
quantitative analysis, in which case the full modulated cnoidal wave character must 
be invoked. Knickerbocker & Newel1 (1980) showed the amplitude a of the soliton 
solution of (3.1) for G = 0 decays as 

(3.5) a = a e-~ds-so) 
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where a, is the initial amplitude and so the ‘initial time’ of the soliton. In figure 3, 
the amplitude a of the lead wave of figure 2 ( a )  is plotted as a function of s. Also 
plotted is the amplitude decay (3.5) of a single unforced soliton. The initial amplitude 
a, of this soliton was chosen to be the maximum amplitude reached by the lead 
upstream wave of figure 2 ( a )  and the ‘initial time ’ so was chosen to  be the value of 
s at which this maximum is attained. As the initial period of amplitude growth is 
dominated by the effect of the forcing and occurs over a relatively small interval of 
s, the effect of changing bottom topography will be relatively minor over this 
amplitude growth period for small E and this choice for a, and so will be reasonable. 
It can be seen that the amplitude behaviour of the lead wave is very different from 
the amplitude behaviour of an isolated, unforced soliton. This is due to the upstream 
wavetrain being a modulated cnoidal wave, not a series of totally isolated solitons. 
If this wavetrain were a series of isolated solitons, (3.5) shows that these waves would 
all individually decay to zero and the steady state seen developing in figure 2 ( a )  
could not occur. It is the linkage between the individual waves of the upstream 
wavetrain and the linkage of the wavetrain to the forcing which allows this steady 
state to develop. Ovstrovsky (1976) showed that as a cnoidal wave solution of (3.1) 
for G = 0 decays, its modulus decreases. Therefore as s increases, the upstream 
wavetrain will become less and less like a train of solitons and its behaviour will 
increasingly diverge from (3.5), which can be seen occurring in figure 3. The detailed 
behaviour of the upstream wavetrain will not be given by the results of Ovstrovsky 
however, as his results apply to a wavetrain of a single modulus and, furthermore, 
the upstream wavetrain is linked to the forcing. 

3.2.  Positive forcing, large bottom slope 

The effect of large bottom slope is shown in figure 2 ( c ) ,  where the solution of (3.1) is 
shown for d = 0, go = 1,t = 0.3 and E = 0.5. The solution in this case is a steady state 
over the forcing. This steady state is due to a balance between the forcing and the 
dissipation and hence is basically the solution of 

Go = EA, (3.6) 

so that (3.7) 
E 

Large bottom slope completely annihilates the upstream and downstream modulated 
cnoidal wavetrains of the solution for constant fluid depth and leaves only a local 
steady state in the neighbourhood of the forcing. 

3.3. Negative forcing, small bottom slope 

The effect of small bottom slope on the solution for negative forcing is shown in 
figure 4 (a )  where the solution for d = 0, go = - 1, 6 = 0.3 and t: = 0.05 is shown. For 
comparison, the solution for e = 0 is shown in figure 1 (b ) .  The damping e = 0.05 is 
sufficiently large to stop any waves from being sent upstream and to damp out most 
of the downstream wavetrain. The solution near the forcing remains unsteady ; 
however the amplitudes of the waves near the forcing have been greatly reduced 
from those for E = 0. 

3.4. Negative forcing, large bottom slope 

An example of the solution for negative forcing and large bottom slope is shown in 
figure 4(b ) ,  where the numerical solution of (3.1) is shown for A = 0, g ,  = - 1,  t; = 0.3 
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FIGURE 4. Numerical solution of (3.1) with d = 0, go = - 1 and 6 = 0.3. ( a )  B = 0.05, ( b )  0.50. 

and e = 0.5. It can be seen that a large bottom slope leads to a localized steady state 
a t  the forcing, again resulting basically from a balance between tthe dissipation and 
the forcing. 

Large values of e, corresponding to rapidly increasing fluid depth, have physical 
significance, while large values of 6 and v, to be discussed in the next sections, have 
less physical significance as they correspond to Reynolds numbers much smaller than 
those usually encountered. We see that rapid changes in the fluid depth result in 
flows that are completely different to those for uniform fluid depth. The flow for large 

is limited to the region of the forcing. 

4. Forced Korteweg-de Vries equation with boundary-layer friction 
The next type of dissipation to be considered in the present work is that due to the 

action of viscosity in boundary layers and/or interfaces. As explained in $ 2 ,  the 
equation describing the effect of boundary-layer viscosity on resonant flow is 

- A , - d A ,  + GAA,+A,,, +G,-6V(A) = 0. (4.1) 

Let us first consider the case of positive forcing. 
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FIGURE 5 .  Numerical solution of (4.1) with A = 0, go = 1 and 5 = 0.3. ( a )  6 = 0.1, ( b )  0.3, (c )  1.0. 
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4.1. Positive forcing, weak damping 

The numerical solutions of (4.1) for A = 0,s = 0.1 ,0 .3  and the forcing (2.19) with 
go = 1 and 6 = 0.3 are shown in figure 5 (a ,  b). For comparison, the numerical solution 
for 6 = 0 is shown in figure 1 (a) .  It can be seen that the solutions for weak boundary- 
layer viscosity and changing bottom profile are quite different. Weak boundary-layer 
viscosity results in the formation of an unsteady undular bore upstream of the 
forcing. A bore is a smooth jump between two different levels and thus a constant 
must be a solution of the equations governing the bore so that these two different 
levels are locally solutions. Therefore since a constant is a solution of (4 .1) ,  but not 
of (3 .1) ,  equation (4.1) can possess an undular bore solution, while ( 3 . 1 )  cannot. This 
difference in the solutions was anticipated on the basis of the spectral behaviour of 
the two types of damping, as discussed in $2.  

Johnson (1970) showed that the unforced KdV-Burgers’ equation has a steady 
undular bore as a solution. It is now shown that the unforced equation (4 .1)  does not 
possess a similar solution. As in Johnson, let us suppose that (4 .1)  has a steady 
undular bore of velocity U as a solution and that the jump across this bore is A,.  This 
steady bore is then the solution of 

( U -  A )  A ,  + 6AA, +A,,, -6V(A) = 0. (4 .2)  

A multiple-scales solution of the form 

A = A,(B, 7) + 6A,(O, 7 )  + .. . (4.3) 

is sought for this equation, where 

and 

0 = $(3Am) i [ z+(3A, -A) t ]  

7 = 6 [ z + ( 3 A m - d ) t ] .  
(4.4) 

At first order, it is found that 

(4 .5)  

A ,  = b(7)  +a(7)  cn2 4 7 )  8,  

U 
b = l A  , _ _  (2m-11, a = & 4 , m ( m 2 - m + l ) - ~ ,  

3m 

At O(S), we find the orthogonality relations 

V(A,)  d e  = 0, f 
and 

(4.6) 

(4.7) 

which must be satisfied to eliminate secular terms in the solution for A,,  where $ 
denotes an integral over one period. It can be seen from (4.5) that the first-order 
solution A ,  has one free parameter, the modulus-squared m. The orthogonality 
relations (4.6) and (4.7) cannot be satisfied simultaneously by one value of m. Hence 
a steady undular bore is not a solution of (4.1). 

The long-term behaviour of the solution away from the forcing may be obtained 
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FIGURE 6. Amplitude a of the lead wave of the upstream wavetrain in figure 5 ( a )  as a function 
of t (-) ; amplitude a of an unforced isolated soliton as a function of t (----). 

t 

from the mass conservation equation for (4.1) away from the forcing. This equation 
yields 

The mean height of the solution away from the forcing decays and hence the long- 
term solution of (4.1) is a localized steady state over the forcing. The continual decay 
of the solution away from the forcing can be seen in the numerical solution shown in 
figure 5(a ) .  This decay of the bores upstream and downstream of the forcing is due 
to the non-local nature of the viscous term. 

As in $ 3, we may again examine the amplitude behaviour of the lead wave of the 
upstream wavetrain. In  figure 6, the amplitude of the lead wave of the upstream 
wavetrain in figure 5 ( a )  is plotted as a function oft. Keulegan (1948) showed that the 
amplitude a of an isolated, unforced soliton decays under the action of boundary- 
layer friction as 

where a, is the initial amplitude of the soliton and f ,  is the initial time. This 
amplitude decay is also plotted in figure 6, with a, taken as the maximum amplitude 
of the lead upstream wave and to the time a t  which this maximum is attained, as was 
done in $3 .  We again see that the behaviour of the upstream wavetrain is not the 
same as a train of isolated solitons. This is again due to the upstream wavetrain being 
a modulated cnoidal wave whose individual waves are linked together. Also, as was 
the case in 9 3, the damping causes the modulus of each of the waves in the wavetrain 
to decrease, so that the upstream wavetrain becomes increasingly less like a train of 
solitons as t increases. 

The solution for an intermediate value of 8, S = 0.3, is shown in figure 5 ( b ) .  The 
oscillations of the undular bore have been nearly damped out, so that the solution 

a = ao[l +0.1514a~S( t - to) ] -4 ,  (4.9) 
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Numerical Numerical 
Experimental S = 0.0561 S = O  

(u) d = -2.19, go = 4.50 

1.15 1.06 
-1.20 - 1.30 

1.60 2.43 
0.95 1 . 1 1  
0.92 1.02 

(b )  d = 0.120, go = 4.50 

2.22 1.85 

1.44 1.64 
1.23 1.13 
0.99 1.07 

-0.93 -0.95 

1.55 

3.18 
1.29 
1.16 

- 1.59 

2.50 
-1.19 

2.38 
1.29 
1.16 

TABLE 2. Comparison of the experimental results of Lee (1985) and numerical results with 
boundary-layer friction and with no friction 

consists of a mean-level variation. Away from the forcing, this mean level is slowly 
damped out, so that after a long time, the solution away from the forcing is zero. 

Lee (1985) experimentally studied the surface waves produced by moving a two- 
dimensional obstacle along the bottom of a wave tank containing a shallow layer of 
water a t  a Froude number near 1. To obtain a quantitative comparison between the 
present numerical results and the experimental results of Lee, we find from (2.15a) 
that for these experiments, 6 = 0.0561 (upon using the values of the parameters 
given by Lee). In  the present notation, the forcing used by Lee is 

G = -18.85+(545.3-1119.7z2)~, 1x1 < 0.4118. (4.10) 

Two representative sets of experimental results will be compared with the solution 
of (4.1) with 6 = 0.0561. In  the present notation, these experimental results 
correspond to ( a )  A = -2.19, go = 4.50 and ( b )  A = 0.120,9, = 4.50 ( A  = -2.19 and 
A = 0.120 correspond to Froude numbers of 0.89 and 1.01 respectively). Table 2 
presents a comparison between the amplitude a of the lead upstream wave, the level 
A+ of the downstream depression, the amplitude a+ of the trailing wave of the 
downstream wavetrain and the periods r1 and r2 of the first two waves of the 
downstream wavetrain for these values of A and go. In  the table, the values of these 
quantities are shown for the experimental results of Lee, for the numerical results 
with 6 = 0.0561 and for the numerical results with 6 = 0. It can be seen that the effect 
of boundary-layer friction goes some way towards accounting for the difference 
between the experimental and theoretical results for 6 = 0. In the derivation of 
Korteweg-de Vries equations of the form (1.1) or (4. l ) ,  higher-order nonlinear 
and dispersive terms of O(a2 a) are neglected (the Korteweg-de Vries terms being 
O(aat)). For the experiments of Lee, a = 0.2, so that the viscous term in (4.1) is of the 
same order as these neglected terms. These higher-order terms are the cause of the 
difference between the solutions of (4.1) and the experimental results. Since the 
amplitudes of the upstream waves are higher for A = 0.120 than for A = -2.19 and 
the converse is the case for the downstream waves, these higher-order terms explain 
why the agreement between the experimental and numerical amplitudes is better 
for the upstream than the downstream waves for A = -2.19 and vice versa for 
A = 0.120. 
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U 

A ,  
a+ 

Numerical results of Numerical 
Experimental Melville & Helfrich 6 = 0.563 

(u)  A = -5.59 
- 7.84 

4.44 8.26 
-3.10 -4.27 - 

3.98 
-4.50 
7.55 

( b )  A = 8.39 

U 6.60 6.60 9.18 
A+ - 1.86 -2.44 -2.80 
a+ 2.83 4.64 3.78 

TABLE 3. Comparison of experimental and numerical results of Melville & Helfrich (1987) and 
the solutions of (4.1) 

Melville & Helfrich (1987) studied the flow produced by towing an obstacle 
through a two-layer fluid consisting of kerosene and water a t  a resonant velocity. 
Their experiments had a = 0.30, so that the wave amplitudes are too large for the 
present weakly nonlinear theory to apply. For their numerical solutions, the authors 
used a forced, extended Korteweg-de Vries equation incorporating terms cubic in 
the nonlinearity. Even though good agreement between the solutions of (4.1) and the 
experimental results is not expected, a comparison is shown in table3, where 
the amplitude a of the lead wave of the upstream wavetrain, the level A ,  of the 
downstream depression and the amplitude a+ of the trailing wave of the downstream 
wavetrain for the solutions of (4.1) are compared with the numerical and 
experimental results of Melville & Helfrich. The forcing used by Melville & Helfrich 
was (2.19) with go = 74.21 and 6 = 5.557. From (2 .15b) ,  it is found that the reported 
experimental data gives S = 0.563, so again 6 is of the same order as the higher-order 
terms. The experimental results in table 3 are for Froude numbers of 0.94 and 1.09, 
which correspond to A = -5.59 and A = 8.39 respectively. Owing to  the recording 
equipment used in the experiments, no experimental value of a for A = -5.59 was 
found. It can be seen that, on the whole, the addition of viscosity to the weakly 
nonlinear Korteweg-de Vries model does not result in better agreement with the 
experimental results than the forced, extended Korteweg-de Vries equation used by 
Melville & Helfrich. The only improvement in agreement occurs for the amplitude 
a+ of the trailing wave of the downstream wavetrain. As stated, good agreement was 
not expected as the amplitudes of the waves are beyond the range of validity of a 
first-order weakly nonlinear theory, these waves having amplitudes O(ai). 

Baines (1984) conducted a similar series of experiments using a moving obstacle to 
resonantly force a two-layer fluid consisting of kerosene and water. I n  these 
experiments, the values of a ranged from O(10-l) to 0(1), so that for many of the 
experimental results, higher-order terms must be included. Using (2.15b), it can be 
found from the experimental parameters that  S took values around 0.5, with the 
exact value depending on the depths of the two layers, which were variable in 
the experiments. Since the hi her-order nonlinear and dispersive terms neglected in 
the derivation of (4.1) are O(aF) relative to the terms appearing in (4.1), we again have 
that these higher-order terms are of the same order as the viscous term. As for the 
experiments of Lee and Melville & Helfrich, viscosity explains some of the differences 
between the inviscid theory and the experimental results, but to fully account for the 
differences, higher-order nonlinear and dispersive terms must be included. 

B 
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FIGURE 7 .  Numerical solution of (4.1) with d = 0, go = - 1 and 5 = 0.3. (a) 6 = 0.1, ( b )  1.0. 

Further discussion of the effect of boundary-layer friction for small S will be 
delayed until the next section, so that comparison can be made with the effect of the 
kinematic viscosity of the fluid as a whole. 

4.2. Positive forcing, strong damping 

The solution of (4.1) for A = 0, go = 1, = 0.3 and 6 = 1.0 is shown in figure 5(c) .  The 
solution for large 8 is similar to the solution for large E in § 3, in that a localized steady 
state forms over the forcing with the solution zero elsewhere. This steady state 
results from a balance between the forcing and the dissipation. 

4.3. Negative forcing, weak damping 
An example of the solution for negative forcing and weak damping is shown in 
figure 7 ( a ) ,  where A = 0, go = - 1, 6 L- 0.3 and 6 = 0.1. For comparison, the solution 
for 6 = 0 is shown in figure l ( 6 ) .  It can be seen that the solution for negative forcing 
is similar to that for the increasing-depth case of $3. Small values of the damping 
leave the solution over the forcing unsteady. The damping for S = 0.1 is sufficiently 
large to damp out any waves that propagate upstream in the solution for 6 = 0. 

4.4. Nega.live forcing, strong damping 
An example of the solution for strong damping and negative forcing is shown in 
figure 7 ( b ) ,  where the numerical solution is for A = 0, go = - 1, 5 = 0.3 and 6 = 1.0. 
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Again strong damping results in the formation of a localized steady state over the 
forcing, this steady state resulting from a balance between dissipation and forcing. 

5. Forced Korteweg-de Vries-Burgers’ equation 
The final type of dissipation to be considered in the present work is that due to the 

viscosity of the fluid as a whole. As stated in $4, in experimental and physical 
situations, this type of viscous force will usually be less important than that due to 
the action of viscosity in boundary layers and/or interfaces. For example, for the 
experiments of Lee (1985), it  can be found from ( 2 . 1 5 ~ ~ )  and (2.18) that Y = 1.27 x 

while 6 = 0.0561. However, the simpler form of the viscous term compared 
with the viscous term for the case of boundary-layer viscosity allows the analysis to 
proceed further. The present form of the dependence on viscosity provides a contrast 
to the situation for boundary-layer viscosity in that a steady undular bore ultimately 
forms upstream and downstream of the forcing, whereas for boundary-layer 
viscosity, the undular bores upstream and downstream of the forcing are unsteady 
and decay to zero. 

The forced Korteweg-de Vries equation incorporating viscosity is the forced 
KdV-Burgers’ equation 

- A ,  - d A ,  + 6AA, +A,,, +G, + vA,, = 0. (5.1) 

Let us first consider the case of positive forcing. 

5.1. Positive forcing, weak damping 

Figure 8 ( a )  shows the numerical solution of (5.1) for d = 0, v = 0.1 and the forcing 
(2.19) with go = 1 and 6 = 0.3. The corresponding solution for v = 0 is shown in 
figure 1 ( a )  and the solution for the corresponding value of boundary-layer viscosity 
is shown in figure 5 (a ) .  Small values of viscosity for both the present dissipation and 
that of $ 4  lead to the formation of undular bores upstream and downstream of the 
forcing. These bores occur because a constant is a solution of (4.1) and (5.1), as 
explained in $4. 

The jump in height across the upstream and downstream bores is greater for the 
present case than for the boundary-layer viscosity case. The reason for this can be 
found by considering the mass conservation equations for (4.1) and (5.1), which 
are 

(5 .2)  
a a 
at ax - - ( A )  +- ( - d A  +3A2 +A, ,  + G )  -6V(A)  = 0 

and - a a 
- -  ( A )  +- ( - d A  + 3AZ+A,, +c: + VA,) = 0 at ax 

respectively. From these equations, we obtain 

and 

(5.3) 

(5.4) 

for (4.1) and (5.1) respectively, where $ denotes that the integral is taken over one 
period. Therefore mean height is conserved in the present case, but is not in the 
boundary-layer-friction case. The jump across the undular bore will therefore be less 
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FIGURE 8. Numerical solution of (5.1) with A = 0, go = 1 and 6 = 0.3. (a)  v = 0.1, ( b )  1.0. 

in the case of boundary-layer viscosity. It can be seen that (5 .5)  implies that, in the 
present case, the undular bore can become steady and the long-term solution will be 
a drop in level across the forcing, in contrast to the situation in the case of boundary- 
layer viscosity, where the undular bore is unsteady and the solution away from the 
forcing decays to zero. 

It can be seen on comparison of figures l ( a ) ,  5 (a)  and 8 ( a )  that, a t  a given time 
t ,  small values of v result in the length of the downstream depression increasing, 
whereas small values of 6 for boundary-layer friction leave this length relatively 
unchanged. The reason for this can be found from the expression (3.2) for the phase 
speed of a cnoidal wave. In the present case, the mean level A remains largely 
unchanged from its value for v = O  and the amplitude a of the cnoidal waves is 
reduced. Hence c increases, so that the length of the downstream depression 
increases. In the case of boundary-layer viscosity, both IZl ( A  < 0) and a decrease. 
These two changes have opposite effects and, from the numerical solution, we see 
that they nearly balance each other. 

Upon closer examination of the solution for small v shown in figure 8 ( a ) ,  it can be 
seen that initially the solution for small v behaves like the solution for v = 0 shown 
in figure 1 (a) .  As time increases, each wave crest then decreases in amplitude until 
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a steady value is reached. Johnson (1970) found the steady undular-bore solution of 
(5.1) for small v. This solution is 

(5.6) A = b-(7) +a-(7) cn2aa_(7) 8, 

where 

(5.7) I 8 = + ( 3 A , ) i [ ~ + ( 3 A , - A ) t ] ;  
2ve 

( 3 A 3  
7=-  = ~ [ ~ + ( 3 A , - d ) t ] ,  

b-=;A;--(2m--l) ,  a- a- = $ A ~ m ( m 2 - m + 1 ) - ~ ,  a - = ( ~ )  2a- t 
3m 

and 
A-e-7 = ( m 2 - m + l ) - ~ [ ( m Z - m + 1 ) E ( m ) - ~ ( 1 - m ) ( 2 - m ) K ( m ) J .  (5.8) 

E and K are complete elliptic integrals of the first and second kind respectively of 
modulus-squared m, A ;  is the value of A resulting from the passage of the bore and 
A- is a constant. As t - t co ,  the solution on the entire upstream side of the forcing 
approaches A,. 

For small v ,  the solution of (5.1) then behaves essentially as the non-viscous 
solution of Smyth (1987), then, under the action of viscosity, evolves into the 
undular bore given by (5.6)-(5.8). To evaluate the constant A- in (5.8), we may take 
the undular bore as developing from a train of solitons. The solution never attains 
the fully developed modulated cnoidal wave solution for v = 0 but, for small v, taking 
the undular bore as developing from an initial soliton wavetrain is a good 
approximation. Therefore the constant A- is approximately 

A- = eTO, (5.9) 

where T~ is the value of 7 a t  the time a t  which the undular bore first starts to form. 
For the solution shown in figure 8(a ) ,  

70 rz v[66.O+33A;]. (5.10) 

Since the passage of the bore results in the formation of a steady state, the solution 
of (5.1) for large time is the solution of 

- d A ,  + 6AA, +A,,, + G ,  + vA,, = 0. (5.11) 

From GS, it can then be shown that 

A- m = 1  6[d + (1290)9 + O ( 4 .  (5.12) 

For d = 0 and go = 1, A ;  = 0.577+ O ( v ) ,  which compares well with the numerical 
value of A ;  = 0.56. 

The wave a t  the head of the undular bore (5 .6)  has m = 1 and so is a solitary wave. 
From (5.7), we find that the amplitude of this wave is given by 

a, = 2A- 2 m'  (5.13) 

Using (5.12), we find that for A = 0 and go = l , a ,  = 0.87, which compares well with 
the numerical value a, = 0.82. For small v, the undular bore given by (5.6)-(5.8) and 
(5.12) is then in good agreement with the numerical solution. 



Resonant flow of a stratijied Jluid over topography 309 

0.8 

0.6 

a 

0.4 

0.2 

0 10 20 30 40 

FIGURE 9. Amplitude a of the lead wave of the upstream wavetrain in figure 8 ( a )  as a function 
o f t  (-); amplitude a of an unforced isolated soliton as a function o f t  (----). 

t 

In  figure 9, the amplitude a of the lead upstream wave in figure 8 ( a )  is plotted as 
a function of time. Karpman (1979) showed that the amplitude a of the soliton 
solution of (5.1) for G = 0 decays as 

a = a,[l++, v(t-t,)]-l, (5.14) 

where a, is the initial amplitude of the soliton and to the initial time. This amplitude 
decay is also plotted in figure 9 with a, and to chosen as in $3,  i.e. a, is taken as the 
maximum amplitude of the lead upstream wave and to the time at which this 
maximum is attained. The development of the lead upstream wave into a wave of 
constant amplitude can be clearly seen. The behaviour of a single isolated soliton and 
the waves of the upstream wavetrain under the present viscous force are distinctly 
different, as was the case in $6 3 and 4. This difference is again due to the fact that 
the upstream wavetrain is a modulated cnoidal wave whose individual waves are 
linked together and, through this linkage, are linked to the forcing. This linkage 
results in a steady undular bore being able to form upstream of the forcing. If the 
upstream wavetrain were a series of isolated solitons, (5.14) shows that the wavetrain 
would decay to zero. So again, while it is useful to consider the upstream wavetrain 
as a series of solitons for qualitative purposes, the full modulated cnoidal wave 
character must be taken into account for quantitative purposes. 

The solution downstream of the forcing behaves in a similar manner to that 
upstream. For small times, the solution behaves as the modulated cnoidal wavetrain 
of GS and Smyth (1987). This solution then evolves into the undular bore of Johnson 
(1970). For small v ,  this undular bore is 

A = 6 + ( ~ )  + a+(T) en2 LZ+(T) 0, (5.15) 
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FIGURE 10. Kumerical solution of (5.1) with d = 0, g,, = - 1 and < = 0.3. (a)  v = 0.1, ( b )  1.0. 

where 

0 = $(3IA+,I)t[x+(3Af,-A)t], 7 = V[Z+(3A+, - -A) t ] ,  1 

It can be shown from GS that 

A+, = &4-(12go)~]+O(v ) .  (5.17) 

From (5.16), we have that the amplitude of the trailing soliton of the bore is given 

a, = $IA',I. (5.18) 

For the solution shown in figure 8 ( a ) ,  the numerical values of Af, and a, are -0.572 
and 0.86 respectively, which compare well with the theoretical values of -0.577 and 
0.866. 

5 .2 .  Positive forcing, strong damping 

The numerical solution of (5 .1)  for A = 0, go = 1 ,  = 0.3 and v = 1.0 is shown in 
figure 8 ( b ) .  It can be seen from figures 5(c )  and 8 ( b )  that  the strong-damping 
solutions for the present case and the boundary-layer viscosity of $4 are very 
different. In  the case of boundary-layer viscosity, a localized steady state develops 
over the forcing, while for the present case, bores propagate upstream and 
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downstream of the forcing. While the mass conservation results (5.4) and (5.5) 
strictly apply only for small values of S and v, they can be used to give an explanation 
for the observed differences in the solutions for large S and v. The mass conservation 
results show that the mean level for the case of boundary-layer viscosity will rapidly 
decay to zero, which precludes the permanent formation of a bore. However, for the 
present case, the mean level is conserved, so that a bore can form. In the case of large 
values of v, the oscillations of the undular bore are completely damped out and the 
solution consists of a mean-level variation only. 

Using a phase-plane analysis, Johnson (1970) found that an undular bore occurs 
for v < 2(3(A,l)i. For v > 2(31A,I)i, the solution is a monotonic profile resulting from 
the dominance of the dissipative terms in (5.1). This monotonic profile is then 
basically a smoothed-out hydraulic jump. The critical value 2(3(A,()i of v has the 
value 2.63 for A = 0 and go = 1 (on using (5.7) or (5.16)). The solution shown in 
figure 8 (b )  has v sufficiently close to this critical value for most of the oscillations of 
the undular bore to be absent. 

5.3. Negative forcing, weak damping 

The solution for negative forcing is similar to that for the boundary-layer viscosity 
of $4. The solution for go = - 1, f [  = 0.3, A = 0 and v = 0.1 is shown in figure 10(a). 
This can be compared with the solution for weak boundary-layer friction shown in 
figure 7 ( a )  and the solution for v = 0 shown in figure 1 (b ) .  Small values of v result in 
the solution over the forcing remaining unsteady. 

5.4. Negative forcing, strong damping 

Figure 10(b) shows the solution of (5.1) ford  = 0, go = - 1, 6 = 0.3 and v = 1.0. This 
solution may be compared with the boundary-layer-viscosity solution for S = 1 .O 
shown in figure 7 ( b )  and the solution for v = 0 shown in figure 1 (b ) .  Large values 
of v result in the formation of an isolated steady state over the forcing, as was the 
case for large values of S in $4. This steady state is again the result of a balance 
between forcing and dissipation. 

The author wishes to acknowledge support from the Australian Research Grants 
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